Microtubule-associated protein 1 light chain 3 is a fibronectin mRNA-binding protein linked to mRNA translation in lamb vascular smooth muscle cells.

نویسندگان

  • B Zhou
  • N Boudreau
  • C Coulber
  • J Hammarback
  • M Rabinovitch
چکیده

Intimal cushions form in the fetal ductus arteriosus by fibronectin-dependent smooth muscle cell migration which is associated with greater efficiency of fibronectin mRNA translation. We investigated whether the AU-rich element (ARE), UUAUUUAU, in the 3'-untranslated region (3'UTR) of fibronectin mRNA is involved in this mechanism by transfecting smooth muscle cells with plasmids containing the chloramphenicol acetyltransferase coding region with its 3'UTR replaced by fibronectin 3'UTR bearing intact or mutated ARE. More efficient translation of fusion mRNA with intact versus mutated ARE was observed. This effect was amplified in ductus (10.9-fold) compared with nonmigratory, lower fibronectin-producing aorta cells (6.5-fold). Ductus cells transfected with wild-type but not ARE-mutated plasmid reverted to the stellate phenotype of aorta cells associated with reduced fibronectin production. This suggested that plasmid ARE sequesters RNA-binding factors, thereby reducing endogenous fibronectin mRNA translation. We next purified a 15-kD fibronectin ARE-dependent RNA-binding protein and identified it as microtubule-associated protein 1 light chain 3 (LC3). LC3 is present in greater amounts in ductus compared with aorta cells, and overexpression of LC3 in aortic cells by transfection enhances fibronectin mRNA translation to levels observed in ductus cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule involvement in translational regulation of fibronectin expression by light chain 3 of microtubule-associated protein 1 in vascular smooth muscle cells.

Our previous studies suggested that enhanced fibronectin mRNA translation in ductus arteriosus compared with aortic smooth muscle cells is related to increased expression of light chain 3 (LC3) of microtubule-associated protein 1, which binds an AU-rich element in the 3' untranslated region of fibronectin mRNA. We therefore hypothesized that microtubules are involved in LC3-mediated fibronectin...

متن کامل

The Effect of Adiponectin on Osteonectin Gene Expression by Oxidized Low Density Lipoprotein-Treated Vascular Smooth Muscle Cells

Osteonectin is a bone- associated protein involved in vascular calcification. Adiponectin may protect against cardiovascular disease but possible effects on vascular calcification have been poorly studied. The aim of this study was to investigate the modulatory effect of adiponectin on oxidized low density lipoprotein (oxLDL)- induced expression of osteonectin in human aorta vascular smooth mus...

متن کامل

Tumor necrosis factor-alpha induces fibronectin synthesis in coronary artery smooth muscle cells by a nitric oxide-dependent posttranscriptional mechanism.

Postcardiac transplant coronary arteriopathy is associated with tumor necrosis factor-alpha (TNF-alpha) induction of fibronectin-dependent smooth muscle cell (SMC) migration into the subendothelium, resulting in occlusive neointimal formation. Because expression of inducible nitric oxide synthase (iNOS) is elevated in neointimal formation after transplantation and upregulated in vascular SMCs b...

متن کامل

PULMONARY VASCULAR MUSCLE PROLIFERATION AS A RESULT OF PROTEIN AND mRNA-eNOS ALTERATIONS IN A RAT MODEL OF CHF

Endothelial Nitric Oxide Synthase (eNOS) produces nitric oxide (NO) from L-arginine and is important for the maintenance of cardiovascular homeostasis. Congestive heart failure (CHF) generally results in increased pulmonary blood flow and if untreated leads to pulmonary hypertension and end stage heart failure. We therefore hypothesized that increased pulmonary flow without changes in pres...

متن کامل

Fibrillar collagen specifically regulates human vascular smooth muscle cell genes involved in cellular responses and the pericellular matrix environment.

Proliferation and alpha(v)beta(3) integrin-dependent migration of vascular smooth muscle cells are suppressed on polymerized type I collagen. To identify genes specifically regulated in human smooth muscle cells by polymerized collagen, we used the suppressive subtraction hybridization technique. Compared with smooth muscle cells cultured on monomer collagen, polymerized collagen suppresses the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 100 12  شماره 

صفحات  -

تاریخ انتشار 1997